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for determining stable ground states in quantum dots’
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National Research Council of Canada, Ottawa, Canada K1A 0R6

Received 16 October 1995

Abstract. Kawamura et al have used the exact diagonalization results for quantum dots
containingN = 7 and N = 10 electrons to review the predictions of cusp structure in the
interaction energy given by two recently proposed schemes. Here we revisit the issues raised
by them.

In the preceding paper Kawamuraet al [1] have reviewed two schemes for predicting
ground states of quantum dots in the light of exact diagonalization results for quantum dots
in a strong magnetic field and containing seven and 10 electrons (N = 7, 10). One of the
schemes was proposed by us [2] while the other was due to Jain and Kawamura [3]. As
the magnetic field is increased the effective filling factorν decreases and the quantum dot
passes through a sequence of ground states. If the total angular momentum atν = 1 is Lmin,
then the filling factor at angular momentumL is given byν = Lmin/L. The object is to
predict the ‘magic’ values ofL at which a downward cusp in the interaction energy arises,
signalling a probable ground state of the quantum dot. Jain and Kawamura [3] used the
ideas of composite-fermion theory together with anansatzfor mapping the kinetic energy
of the given system to a non-interacting composite-fermion kinetic energy to determine the
‘magic’ L values. We used an admittedly less fundamental but extremely simple approach
based on filling up of sub-Landau levels (sLLs) to predict the ‘magic’L values. Profiting
from the exact diagonalization results given by Kawamuraet al in the preceding article [1],
we show that our model holds to within the error limits and uncertainties indicated in our
paper [2].

We briefly summarize our extremely simple method, to be called here the sLL-filling
method (sLLf method), for the convenience of the reader. If the total angular momentum
is L, we decompose it into (k − 1) units ofLmin and the remainderR. Then we write it as,
e.g.,

L = Lmin(1, 1, . . . , R/Lmin)

and understand it to mean that (k − 1) sLLs are filled, while thekth sLL has an effective
filling fraction ν∗

k = R/Lmin. If R/Lmin happens to be zero, or to correspond to one of the
accepted fractional quantum Hall (FQH) filling fractions, then we say thatL is a candidate
for being a ‘magic’L value for the quantum dot. Finite-size effects also introduce a down
cusp (magicL) at L = Lmin +N . This ideal sLLf scheme is modified by certain limitations
and uncertainties (see [2]). For example, two quite distinct FQH fractions of the infinite
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system might give two ‘magic’ dropletL-values very close to each other and hence theN -
particle droplet may show both, one orneitherof these fractions. What actually happens can
only be determined by a higher-order theory. For later use we call this the bad-neighbour
(BN) effect. Theν = 1/2 case can be approximated by many FQH fractions on both sides
of 1/2 and constitutes a pathological bad-neighbour case where the down cusp disappears
as the number of electronsN increases. The sLLf method is expected to be better and
BN effects become less severe as the numberN of electrons in the dot becomes larger.

Our starting point for the sLL structure is indeed related to the ideas of composite
fermions given by Jain [4]. However, we begin with a two-component fluid of electrons
and flux quanta and construct sLLs containing electrons attached to one flux quantum each
(particles) and no electrons attached to one flux quantum each (empty levels). The sLLf
method given in [2] is essentially an extension of the ideas that we have successfully used
in [5] to predict the ground state energies of FQH fractions of the uniform fluid. In this
schemeν = 1/2 appears as an incompressible fluid with enormous fluctuations. In the
droplet case with finiteN these fluctuations are suppressed andν = 1/2 should appear
as a down cusp, i.e. a magicL value. Thus forN = 7, Lmin = 21, we would expect a
downward cusp atL = 42. The simple1L = N rule proposed by Laughlin [6] and also
by Maksym [7] would also predict a down cusp atL = 42. In table 1 of [2] we listed
some of the down cusps forN = 7. The (1, 1, 2/3) case is given asL = 58 due to an
inadvertent error, and should beL = 21+21+(21×2/3), i.e.,L = 56, a value found in the
exact diagonalization (ED) results. Some of the other possible fractions were not listed in
table 1. Thus if we simply include the possible FQH and other fractions within the selected
L-range discussed in [1], we have the following possible magicL-values: (ν = 1, L = 21),
L = 28, (ν∗

2 = 5/7, L = 30), (ν∗
2 = 4/7, L = 33), (ν∗

2 = 2/3, L = 35), (ν∗
2 = 5/7, L = 36),

(ν∗
2 = 6/7, L = 39), (ν∗

2 = 1, L = 42), (ν∗
3 = 1/7, L = 45), (ν∗

3 = 2/7, L = 48),
(ν∗

3 = 1/3, L = 49), (ν∗
3 = 3/7, L = 51), (ν∗

3 = 4/7, L = 54), (ν∗
3 = 2/3, L = 56). Of

theseL = 28 andL = 30 interact andL = 30 seems to be suppressed due to the BN effect.
L = 33 is correctly predicted.L = 35 andL = 36 both suffer the BN effect and are not
seen in the ED except as a discontinuity atL = 36. ThenL = 39 is correctly predicted.
L = 42 does not seem to appear in the ED of Kawamuraet al. L = 45 and 46 suffer
the BN effect and disappear. The casesL = 45, 51 and 56 are correctly predicted by us.
Thus, indicating BN values by including them in parenthesis, we compare the prediction
and exact diagonalization as follows.

Prediction : (28, 30), 33, (35?, 36?), 39, 42, 45, (48?, 49?), 51, (54?, 56?, 57?)
ED : 28, 33, 39, 45, 51, 56.

It is clear that our prediction scheme does a good job if the BN cusps are treated as
ambiguous. In effect, a higher-order theory is needed to determine whether such cusps
would survive or shift to a nearbyL-value. Evidently, the composite-fermion approach
of Jain et al [3] correctly handles most of the BN effects and provide impressive results,
but at the cost of significantly more complicated computationsthan needed in our ‘pocket-
calculator’ approach. However, as is clear from the results for the caseN = 10, and
also theN = 6 case,not all the exact diagonalization ground states are picked up by
the Kawamura–Jain approach. Thus, even if we restrict ourselves to the limitedL-range
covered in figure 1 of [1], theL = 61 cusp forN = 10 and theL = 40 cusp forN = 6
found in the ED results [8] are not obtained by the composite-fermion mapping. This is
probably because the composite fermions of Kawamuraet al are treated as non-interacting
sets of particles whereN is finite. In our approach we are at a very simple level where
only the existence of a gap structure is assumed and taken to be that of the infinite fluid
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(N = ∞). We had stated in our paper that the numerical estimates are probably accurate to
a few per cent. This was based on the numerical data that were available to us at that time.
The numerical values given forN = 7 andN = 10 by Kawamuraet al do not seem to
significantly upset that estimate. However, the results of [1] clearly establish that the cusp
structure presented by our simple mapping yields more candidates for downward cusps than
are actually found via a more complete theory.
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